本文系统介绍了GPS的原理和其三大子系统,着重介绍了GPS系统在交通运输中的应用,包括在道路工程、汽车导航和交通管理中的应用以及其他应用
一、全球定位系统GPS简介 全球卫星定位系统GPS是美军70年代初在“子午仪卫星导航定位”技术上发展而起的具有全球性、全能性(陆地、海洋、航空与航天)、全天候性优势的导航定位、定时、测速系统。GPS由三大子系统构成:空间卫星系统、地面监控系统、用户接收系统。 空间卫星系统 空间系统的每颗卫星每12小时(恒星时)沿近圆形轨道绕地球一周,由星载高精度原子钟(基频F=10.23MHZ)控制无线电发射机在“低噪音窗口”(无线电窗口中,2至8区间的频区天线噪声最低的一段是空间遥测及射电干涉测量优先选用频段)附近发射L1、L2两种载波,向全球的用户接收系统连续地播发GPS导航信号。GPS工作卫星组网保障全球任一时刻、任一地点都可对4颗以上的卫星进行观测(最多可达11颗),实现连续、实时地导航和定位。 GPS卫星向广大用户发送的导航电文是一种不归零的二进制数据码D(t),码率fd=50HZ。为了节省卫星的电能、增强GPS信号的抗干扰性、保密性,实现遥远的卫星通讯,GPS卫星采用伪噪声码对D码作二级调制,即先将D码调制成伪噪声码(P码和C/A码),再将上述两噪声码调制在L1、L2两载波上,形成向用户发射的GPS射电信号。因此,GPS信号包括两种载波(L1、L2)和两种伪噪声码(P码、C/A码)。这四种GPS信号的频率皆源于10.23MHZ(星载原子钟的基频)的基准频率。基准频率与各信号频率之间存在一定的比例。其中,P码为精确码,美国为了自身的利益,只供美国军方、政府机关以及得到美国政府批准的民用用户使用,C/A码为粗码,其定位和时间精度均低于P码,目前,全世界的民用客户均可不受限制地免费使用。 地面监控系统 地面监控系统各站的主要任务是: 监测站 主控站 ·及时编算每颗卫星的导航电文并传送给注入站。 注入站 用户接收系统 GPS接收机 微处理器是GPS接收机的核心,承担整个系统的管理、控制和实时数据处理。视屏监控器是接收机与操作者进行人机交流的部件。 目前,国际上已推出几十种测量用GPS接收机,各厂商的产品朝着实用、轻便、易于操作、美观价廉的方向发展。 GPS数据处理软件 GPS定位技术是正在发展中的高新技术,数据处理技术也处在不断更新之中,各系列GPS接收机制造厂家研制的处理软件也各具特色。 GPS定位的基本方法 由对GPS信号观测量的不同,GPS定位的基本方法有以下几种形式: ·伪距测量 为了精密定位,一台GPS接收机往往不是单纯采用一种测量方式,而是以某种方式为主,并辅以其他方法。 目前,全球定位系统已广泛应用于军事和民用等众多领域中。GPS技术按待定点的状态分为静态定位和动态定位两大类。静态定位是指待定点的位置在观测过程中固定不变的,如GPS在大地测量中的应用。动态定位是指待定点在运动载体上,在观测过程中是变化的,如GPS在船舶导航中的应用。静态相对定位的精度一般在几毫米几厘米范围内,动态相对定位的精度一般在几厘米到几米范围内。对GPS信号的处理从时间上划分为实时处理及后处理。实时处理就是一边接收卫星信号一边进行计算,获得目前所处的位置、速度及时间等信息;后处理是指把卫星信号记录在一定的介质上,回到室内统一进行数据处理。一般来说,静态定位用户多采用后处理,动态定位用户采用实时处理或后处理。 二、GPS在交通运输中的应用 1、GPS在道路工程中的应用 GPS在道路工程中的应用,目前主要是用于建立各种道路工程控制网及测定航测外控点等。随着高等级公路的迅速发展,对勘测技术提出了更高的要求,由于线路长,已知点少,因此,用常规测量手段不仅布网困难,而且难以满足高精度的要求。目前,国内已逐步采用GPS技术建立线路首级高精度控制网,如沪宁、沪杭高速公路的上海段就是利用GPS建立了首级控制网,然后用常规方法布设导线加密。实践证明,在几十公里范围内的点位误差只有2cm左右,达到了常规方法难以实现的精度,同时也大大提前了工期。浙江省测绘局利用Wild 200 GPS接收机的快速静态定位功能施测了线路的全部初测导线,快速、高精度的建立了数百公里的高速公路控制网,取得了良好的效果。GPS技术也同样应用于特大桥梁的控制测量中。由于无需通视,可构成较强的网形,提高点位精度,同时对检测常规测量的支点也非常有效。如在江阴长江大桥的建设中,首先用常规方法建立了高精度边角网,然后利用GPS对该网进行了检测,GPS检测网达到了毫米级精度,与常规精度网的比较符合较好。GPS技术在隧道测量中具有广泛的应用前景,GPS测量无需通视,减少了常规方法的中间环节,因此,速度快、精度高,具有明显的经济和社会效益。 差分动态GPS在道路勘测方面主要应用于数字地面模型的数据采集、控制点的加密、中线放样、纵断面测量以及无需外控点的机载GPS航测等方面。1994年6月在同济大学试验了KART实时相位差分卫星定位系统,在1km范围内达到了优于2cm的精度,因此能够用于线路控制网的加密。GPS测量包含有三维信息,可用于数字地面模型的数据采集、中线放样以及纵断面测量。在中线平面位置放样的同时,可获得纵断面,在中线放样中需实时把基准站的数据由数据链传到移动站,从而提供移动站的实时位置,由于GPS仪器不象经纬仪那样可以指示方向,因此需与计算机辅助设计系统相结合,从而可在计算机屏幕上看到目前位置与设计坐标的差异。机载动态差分GPS应用于航测在德国和加拿大已取得了成功,用载波相位差分测出每个摄影中心的三维坐标,而不再需要外控点测量,取得了良好的效果。 2、GPS在汽车导航和交通管理中的应用 三维导航是GPS的首要功能,飞机、船舶、地面车辆以及步行者都可利用GPS导航接收器进行导航。汽车导航系统是在全球定位系统GPS基础上发展起来的一门新型技术。汽车导航系统由GPS导航、自律导航、微处理器、车速传感器、陀螺传感器、CD—ROM驱动器、LCD显示器组成。 GPS导航是由GPS接收机接收GPS卫星信号(三颗以上),求出该点的经纬度坐标、速度、时间等信息。为提高汽车导航定位精度,通常采用差分GPS技术。当汽车行驶到地下隧道、高层楼群、高速公路等遮掩物而与捕获不到GPS卫星信号时,系统可自动导入自律导航系统,此时由车速传感器检测出汽车的行进速度,通过微处理单元的数据处理,从速度和时间中直接算出前进的距离,陀螺传感器直接检测出前进的方向,陀螺仪还能自动存储各种数据,即使在更换轮胎暂时停车时,系统也可以重新设定。 由GPS卫星导航和自律导航所测到的汽车位置坐标数据、前进的方向都与实际行驶的路线轨迹存在一定误差,为修正这两者的误差,与地图上的路线统一,需采用地图匹配技术,加一个地图匹配电路,对汽车行驶的路线与电子地图上道路误差进行实时相关匹配作自动修正,此时地图匹配电路是通过微处理单元的整理程序进行快速处理,得到汽车在电子地图上的正确位置,以指示出正确行驶路线。CD-ROM用于存储道路数据等信息,LCD显示器用于显示导航的相关信息。 GPS导航系统与电子地图、无线电通信网络及计算机车辆管理信息系统相结合,可以实现车辆跟踪和交通管理等许多功能,这些功能包括: 车辆跟踪 提供出行路线规划和导航 信息查询 (4)话务指挥 指挥中心可以监测区域内车辆运行状况,对被监控车辆进行合理调度。指挥中心也可随时与被跟踪目标通话,实行管理。 (5)紧急援助 通过GPS定位和监控管理系统可以对遇有险情或发生事故的车辆进行紧急援助。监控台的电子地图显示求助信息和报警目标,规划最优援助方案,并以报警声光提醒值班人员进行应急处理。 GPS技术在汽车导航和交通管理工程中的研究与应用目前在中国刚刚起步,而国外在这方面的研究早已开始并已取得了一定的成果。加拿大卡尔加里大学设计了一种动态定位系统,该系统包括一台捷联式惯性系统,两台GPS接收机和一台微机,可测定已有道路的线形参数,为道路管理系统服务。美国研制了应用于城市的道路交通管理系统,该系统利用GPS和GIS建立道路数据库,在数据库中包含有各种现时的数据资料,如道 (责任编辑:admin) |